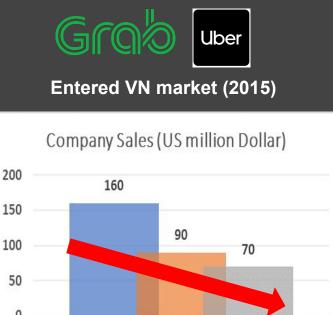


Company Introduction

Founded in 1993
Occupy 63/63 province in Vietnam.
The biggest traditional taxi
company in Vietnam

- 15.000 taxi cabs
- 19.000 full time drivers
- 1.5 2 million successful trips/month

App booking percentage (7%-10%)



Business Problem

Business Goal: To seize/maintain our customer with a very limited budget.

Challenges: Under competition from money-burning promotional campaigns of tech-based taxi services (Uber / Grab)

Opportunity: Precision marketing. If we can predict which customers will leave the service and implement appropriate portion.

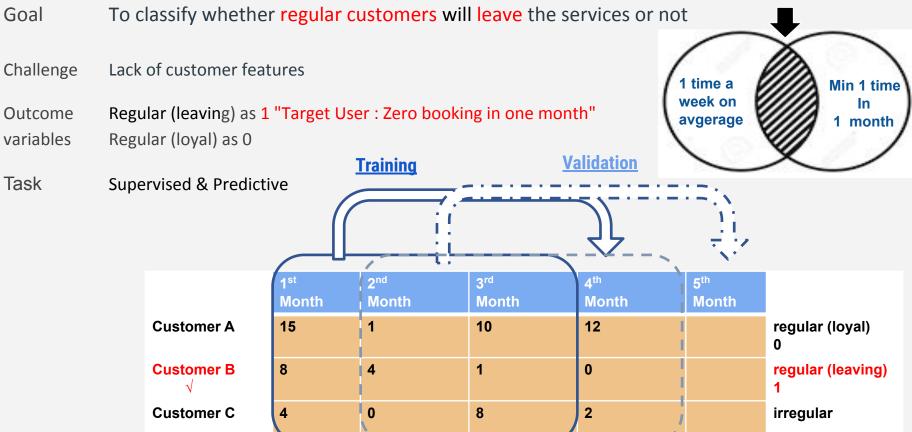
Humanity considerations: (1) Data Privacy; (2) Fairness

Stakeholder: (1) Marketing department

- (2) Customer service department
- (3) Planning department and board of directors
- (4) Users

Data Mining Problem

Regular Customers Definition



Data Descriptions

Time Period: 7/2019 to 11/2019

Row: Booking transaction data.

Number of used column: 7 / 66

(1) customer id, (2) status

(3-5) time: (request, accept, pickup)

(6) province_id, (7) driver_id

Predictors (initial 18)

- Waiting time (driver accept, pickup)
- Number of trip (success/fail/cancel)
- Number of driver over number of trip
- Day of the week
- Booking in Big city (categorical)

client_id	status	time_client_request	time_driver_accept	time_up_taxi	province_id	driver_id
801550	3	8/19/2019 12:04:17 AM	8/19/2019 12:04:21 AM	8/19/2019 12:06:47 AM	14	16068
216389	3	8/19/2019 12:04:29 AM	8/19/2019 12:04:32 AM	8/19/2019 12:14:29 AM	6	32526
10101	5	8/19/2019 12:07:47 AM			18	
661369	5	8/19/2019 12:08:26 AM			34	
611801	5	8/19/2019 12:10:01 AM			2	
519254	3	8/19/2019 12:10:43 AM	8/19/2019 12:12:00 AM	8/19/2019 12:15:12 AM	2	31098
611801	6	8/19/2019 12:12:24 AM	8/19/2019 12:13:17 AM		2	70459
1016262	3	8/19/2019 12:15:47 AM	8/19/2019 12:15:56 AM	8/19/2019 12:19:40 AM	2	58200

Data Preprocessing

Extract the latest 3 month data

Aggregate and build the possible predictors

Choose regular customers

No.	Transaction data	Predictors construct	Measures in 3 month	
1-3	time request- time accept	Driver accept waiting time	max, min, average	
4-6	time accept - time pickup	Pick up waiting time	max, min, average	
7-9	customer_id, status	Number of trip	successful, fail, user cancel	
10-16	time request, number of trip	Day of week booking ratio (7 days)	trip percentage of day of week.	
17	driver_id, trip_id	Driver - customer relationship	number of driver over number of trip	
18	province id	Big city booking	Customer live in Big city	

Methods

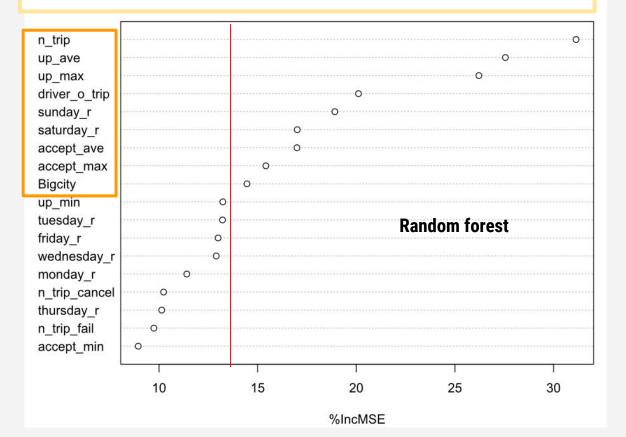
Choose Predictors

- Random forest
- Stepwise

Predict method Logistic regression

Performance Measure
Decile-wise lift chart

Stepwise: n_trip, driver_o_trip, Saturday_r, accept_max, Bigcity



Run logistic regression

```
Call:
glm(formula = leave ~ n_trip + up_ave + up_max + sunday_r + driver_o_trip +
   saturday_r + accept_ave + accept_max + Bigcity, family = "binomial",
   data = data taxi)
Deviance Residuals:
   Min
            10 Median 30
                                     Max
-0.7557 -0.5358 -0.4598 -0.3307
                                  3.2512
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
            -1.228782 0.330614 -3.717 0.000202 ***
(Intercept)
n_trip
            -0.027229 0.004101 -6.639 3.15e-11 ***
up_ave 0.017919 0.032060 0.559 0.576221
                       0.003020 -1.188 0.234876
            -0.003588
up_max
sunday_r -0.267324
                       0.407997 -0.655 0.512332
driver o trip 0.486232 0.381303 1.275 0.202244
saturday_r -0.862368 0.434098 -1.987 0.046969 *
accept_ave 0.476231
                       0.514625 0.925 0.354761
accept_max -0.299300 0.166497 -1.798 0.072236 .
Bigcity1
            -0.384708
                       0.126602 -3.039 0.002376 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3356.0 on 4927 degrees of freedom
Residual deviance: 3228.8 on 4918 degrees of freedom
AIC: 3248.8
```

Waiting time (+)

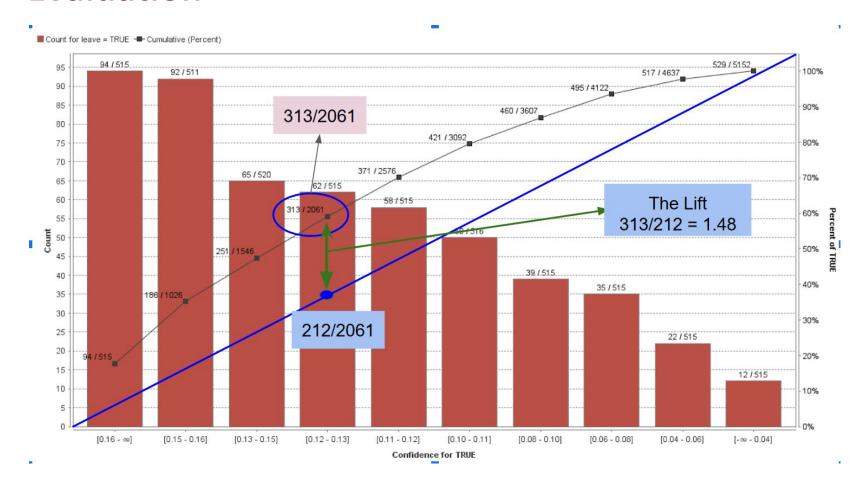
#Driver / #trip unfamiliar degree (+)

Weekend (-)

#Success trip (-)

Bigcity booking (-)

Evaluation



Limitations & Recommendations

Limitation

- 1. Not yet exploit location data for prediction
- Not yet exploit booking data in hourly (e.g., a rush hour)

Recommendations

- 1. Improve driver customer relationship
- 2. Combine with customer support data to get higher prediction performance
- 3. Predict at the end of month and prepare the promotion