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Understanding the Data

e Data from the St. Louis Cardinals
- Sig Mejdal, Senior Quantitative Analyst
e Consists of plate appearances with men
on base
- The teams involved In the occurrence
- Inning/Score/# of Outs/Batter

e Need to determine which variables
matter the most in bunt prediction



Data Pre-Processing Challenges

Partitioning the data
Numerical vs. Categorical
Eliminating variables
Creating dummy variables
Binning variables

Deriving new variables

Using outside data sources to validate our
assumptions

- Baseball-reference.com



Naive Rule and AL/NL Difference
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The Significance of Score
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Visualizing the Data

Inning vs. Bunt Percentage Batter Position vs. Bunt Percentage
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Methodology

e Classification Trees
- Desired by client
- Low bunt frequency led to difficulties
- Over-sampling helped, but still not accurate

e L ogistic Regression: Global vs. Team-
based

- Initially, team-based models looked most
Ideal

- Team-based models much more parsimonious
and but not as accurate as global models



The Best Model

e Global Logistic Regression - Best Subset

- Cutoff of 0.5

- Validation Error Rate: 3.00%

- NYY & CWS: 2.72% Error

The Regression Model

Input variables Coefficient| Std. Error p-value Odds
Constant term -2.91484118| 0.19527394 0 %
Inning 1-9: 0 10+: 1 1.43896341| 0.31070757| 0.00000363| 4.2163229
out.before -2.06532502| 0.12200621 0| 0.12677707
basecode.before_3 -1.18709564| 0.52609891| 0.02404486 0.3051061
basecode.before_4 0.47677508| 0.16713402| 0.00433562| 1.61087108
basecode.before_6 -2.63196373| 1.02573335| 0.01028984| 0.07193705
basecode.before_7 -2.14123392| 0.72531897| 0.00315593| 0.11750975
binned score diff_2 0.66862828| 0.20002525| 0.00082962| 1.95155859
binned score diff_5+ -0.85927516| 0.3422673| 0.01205473| 0.42346892
binned bpos_3-7 -1.65075326] 0.1863011 0| 0.1919053
binned bpos_9 1.85490274| 0.15460882 0| 6.39107656
Top Bunter 1.51956904| 0.26843038| 0.00000002| 4.57025528
Team binned_2 0.90669906| 0.20409924| 0.00000889| 2.47613549
Team binned_3 1.00761068| 0.20899259( 0.00000143| 2.73904896
Team binned_4 1.47704506| 0.21063162 0| 4.3799839

Residual df

Residual Dev.

% Success in training data
# lterations used

Multiple R-squared

9985
1757.736206
3.17
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0.3749283




Performance Metrics

Validation Data scoring - Summary Report

Cut off Prob.Val. for Success (Updatable) 0.5

Classification Confusion Matrix

Predicted Class

Actual Class 1 0

1 226 1317

0 184 48273

Error Report

Class # Cases #Errors % Error
1 1543 1317 85.35
0 48457 184 0.38
Overall 50000 1501 3.00

Elapsed Time

Overall (secs) 593.00




Caveats In the analysis

e Data Purged
- 2004 Season

e Potential important data not provided
- Opposing pitcher, weather...

e Naive Rule Is tough for a model to “beat”
- Sacrifice bunts not a common occurrence

e Need more power!

- More powerful software could have made the
analysis more manageable
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Final Thoughts

e Domain Knowledge extremely powerful

e Complicated Models: Marginal Improvement
over Naive Rule

e Cost-Benefit: How much is the model worth In
wins compared to using the Naive Rule?

- Predict approximately 2-3 more bunts, prevent 1 run
over the course of a season

- Assume a competent manager’s domain knowledge
would be far more effective

11



Red Sox
Blue Jays
Athletics
Rangers
Yankees
Devil Rays
Orioles
Indians

Justification for binning teams

20
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2328

0.84%
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1.26%
1.36%
1.87%
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Teamgroup 1

Teamgroup 2

Teamgroup 3

Teamgroup 4
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